Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 21
Filtre
1.
medrxiv; 2024.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2024.02.08.24302032

Résumé

The ongoing evolution of the SARS-CoV-2 virus has led to a move to update vaccine antigens in 2022 and 2023. These updated antigens were chosen and approved based on in vitro neutralisation titres against recent SARS-CoV-2 variants. However, unavoidable delays in viral manufacture and distribution meant that the updated booster vaccine was no longer well matched to the circulating SARS-CoV-2 variant by the time of its deployment. Understanding whether the updating of booster vaccine antigens improves immune responses to subsequent SARS-CoV-2 circulating variants is a major priority in justifying future vaccine updates. Here we analyse all available data on the immunogenicity of variant containing SARS-CoV-2 vaccines and their ability to neutralise later circulating SARS-CoV-2 variants. We find that updated booster antigens give a 1.4-fold [95%CI 1.07-1.82] greater increase in neutralising antibody levels when compared with a historical vaccine immunogen. We then use this to predict the relative protection that can be expected from an updated vaccine even when the circulating variant has evolved away from the updated vaccine immunogen. These findings help inform the roll out of future booster vaccination programs.


Sujets)
COVID-19
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.11.14.23298536

Résumé

BackgroundFollowing widespread exposure to Omicron variants, COVID-19 has transitioned to endemic circulation. Populations now have diverse infection and vaccination histories, resulting in heterogeneous immune landscapes. Careful consideration of vaccination is required through the post-Omicron phase of COVID-19 management to minimise disease burden. We assess the impact and cost-effectiveness of targeted COVID-19 vaccination strategies to support global vaccination recommendations. MethodsWe integrated immunological, transmission, clinical and cost-effectiveness models, and simulated populations with different characteristics and immune landscapes. We calculated the expected number of infections, hospitalisations and deaths for different vaccine scenarios. Costs (from a healthcare perspective) were estimated for exemplar country income level groupings in the Western Pacific Region. Results are reported as incremental costs and disability-adjusted life years averted compared to no additional vaccination. Parameter and stochastic uncertainty were captured through scenario and sensitivity analysis. FindingsAcross different population demographics and income levels, we consistently found that annual elder-targeted boosting strategies are most likely to be cost-effective or cost-saving, while paediatric programs are unlikely to be cost-effective. Results remained consistent while accounting for uncertainties in the epidemiological and economic models. Half-yearly boosting may only be cost-effective in higher income settings with older population demographics and higher cost-effectiveness thresholds. InterpretationThe seresults demonstrate the value of continued booster vaccinations to protect against severe COVID-19 disease outcomes across high and middle-income settings and show that the biggest health gains relative to vaccine costs are achieved by targeting older age-groups. FundingFunded by the World Health Organization. O_TEXTBOXResearch in context Evidence before this studyWith COVID-19 now globally endemic, populations exhibit varying levels of natural and vaccine-acquired immunity to SARS-CoV-2. With widespread, if variable, immunity resulting in reduced severity of COVID-19 disease, re-evaluation of the ongoing value of vaccination is required. COVID-19 vaccination strategies must consider the cost-effectiveness of gains from vaccination given prior immunity, and in the context of income and health system capacity to manage COVID-19 alongside other pressing concerns. Few articles examine cost-effectiveness of COVID-19 vaccination strategies in populations with diverse characteristics and waning hybrid immunity, though there is a large body of literature that considers some combination of these elements or focus on one particular country. Consensus is that allocating vaccine doses to older age groups and those at higher risk of severe disease is most beneficial, albeit assuming either only past natural immunity or no waning immunity. These studies have either not included a cost-effectiveness analysis or, where present, have typically assumed a base case zero-vaccination scenario. Added value of this studyWe consider the contemporary situation where populations have varying degrees of hybrid immunity resulting from both prior infection and vaccination, and where the relevant cost-effectiveness analysis considers only future primary and booster doses in the population. We describe multiple demographics, using exemplar older and younger populations, in conjunction with low to high past vaccination coverage, low to high past natural infection incidence, and low to high income levels. Under these settings, we determine the cost-effectiveness of a range of targeted boosting strategies (who, when, what). Implications of all the available evidenceOur study highlights how future COVID-19 booster doses targeted towards older age groups at risk of severe outcomes can be cost-effective or cost-saving in high-income settings with populations that have a higher proportion of individuals at risk. In younger, lower-resourced settings, annual boosting of older age groups may still be cost-effective or cost-saving in some scenarios. We consistently find that pediatric vaccination is not cost-effective. Given the benefits of vaccination, especially to reduce severe disease, we show the importance of ongoing global efforts to provide and equitably distribute vaccines and strengthen adult immunisation programs. C_TEXTBOX


Sujets)
COVID-19
3.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.06.18.23291566

Résumé

Background Surrogates of antiviral efficacy are needed for COVID-19. We investigated the relationship between the virological effect of treatment and clinical efficacy as measured by progression to severe disease in unvaccinated outpatients treated for mild to moderate COVID-19. Methods We searched PubMed, Scopus and medRxiv from inception to 27th September 2022, for randomised controlled trials (RCTs) which tested potential treatments for COVID-19 in non-hospitalized patients. We included studies that reported both clinical and virological outcomes. Clinical outcomes were the rate of disease progression (generally hospitalization or death within 28 days of commencing treatment) and virological outcomes were viral load (viral RNA copies in upper respiratory tract swabs) within the first 7 days of treatment. Studies were excluded if they did not report on the outcome of a primary randomised controlled trial, or if results were reported in a more complete form in another publication. Risk of Bias assessment was performed using the RoB 2.0 tool. We used generalised linear models with random effects to assess the association between outcomes and account for study heterogeneity. Findings We identified 1372 unique studies of which 14 (with a total of 9257 participants) met inclusion criteria. Larger virological treatment effects at both day 3 and day 5 were associated with decreased odds of progression to hospitalisation or death in unvaccinated ambulatory subjects. The odds ratio (OR) for each extra two-fold reduction in viral load in treated compared to control subjects was 0.54 on both days 3 and 5 post treatment (day 3 95% CI 0.38 to 0.74, day 5 95%CI 0.41 to 0.72). There was no relationship between the odds of hospitalisation or death and virological treatment effect at day 7 (OR 0.91, 95%CI 0.74 to 1.13). Interpretation Despite the aggregation of studies with differing designs, and evidence of risk of bias in some virological outcomes, this review provides evidence that treatment-induced acceleration of viral clearance within the first 5 days after treatment is a surrogate of clinical efficacy to prevent hospitalisation with COVID-19. This work supports the use of viral clearance as an early phase clinical trial endpoint of therapeutic efficacy. Funding The authors were supported by the Australian Government Department of Health, Medical Research Future Fund, National Health and Medical Research Council and the University of New South Wales.


Sujets)
COVID-19 , Mort
4.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.03.28.23287848

Résumé

Understanding mucosal antibody responses from SARS-CoV-2 infection and/or vaccination is crucial to develop strategies for longer term immunity, especially against emerging viral variants. We profiled serial paired mucosal and plasma antibodies from: COVID-19 vaccinated only vaccinees (vaccinated, uninfected), COVID-19 recovered vaccinees (convalescent, vaccinated) and individuals with breakthrough Delta or Omicron BA.2 infections (vaccinated, infected). Saliva from COVID-19 recovered vaccinees displayed improved antibody neutralizing activity, Fc{gamma}R engagement and IgA compared to COVID-19 uninfected vaccinees. Furthermore, repeated mRNA vaccination boosted SARS-CoV-2-specific IgG2 and IgG4 responses in both mucosa biofluids (saliva and tears) and plasma. IgG, but not IgA, responses to breakthrough COVID-19 variants were dampened and narrowed by increased pre-existing vaccine-induced immunity to the ancestral strain. Salivary antibodies delayed initiation of boosting following breakthrough COVID-19 infection, especially Omicron BA.2, however, rose rapidly thereafter. Our data highlight how pre-existing immunity shapes mucosal SARS-CoV-2-specific antibody responses and has implications for long-term protection from COVID-19.


Sujets)
COVID-19
5.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.02.19.23286159

Résumé

SARS-CoV-2 breakthrough infection of vaccinated individuals is increasingly common with the circulation of highly immune evasive and transmissible Omicron variants. Here, we report the dynamics and durability of recalled spike-specific humoral immunity following BA.1 or BA.2 breakthrough infection, with longitudinal sampling up to 8 months post-infection. Both BA.1 and BA.2 infection robustly boosted neutralisation activity against the infecting strain while expanding breadth against other Omicron strains. Cross-reactive memory B cells against both ancestral and Omicron spike were predominantly expanded by infection, with limited recruitment of de novo Omicron-specific B cells or antibodies. Modelling of neutralisation titres predicts that protection from symptomatic reinfection against antigenically similar strains will be remarkably durable, but is undermined by novel emerging strains with further neutralisation escape.


Sujets)
Douleur paroxystique
6.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.11.22.22282199

Résumé

Multiple monoclonal antibodies have been shown to be effective for both prophylaxis and therapy for SARS-CoV-2 infection. Here we aggregate data from randomized controlled trials assessing the use of monoclonal antibodies in preventing symptomatic SARS-CoV-2 infection. We use data on changes in the in vivo concentration of monoclonal antibodies, and the associated protection from COVID-19, over time to model the dose-response relationship of monoclonal antibodies for prophylaxis. We estimate that 50% protection from COVID-19 is achieved with a monoclonal antibody concentration of 939-fold of the in vitro IC50 (95% CI: 135 - 2073). This relationship provides a quantitative tool allowing prediction of the prophylactic efficacy and duration of protection for new monoclonal antibodies administered at different doses and against different SARS-CoV-2 variants. Finally, we compare the relationship between neutralization titer and protection from COVID-19 after either monoclonal antibody treatment or vaccination. We find no evidence for a difference between the 50% protective titer for monoclonal antibodies and vaccination, although vaccination is predicted to be capable of achieving a higher maximum level of protection.


Sujets)
COVID-19
7.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.08.25.22279237

Résumé

As a result of the emergence and circulation of antigenically distinct SARS-CoV-2 variants, a number of variant-modified COVID-19 vaccines have been developed. Here we perform a meta-analysis of the available data on neutralisation titres from clinical studies comparing booster vaccination with either the current ancestral-based vaccines or variant-modified vaccines. We then use this to predict the relative efficacies of these booster vaccines under different scenarios.


Sujets)
COVID-19
8.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.09.22275942

Résumé

Background: Vaccine protection from COVID-19 has been shown to decline with time-since-vaccination and against SARS-CoV-2 variants. Protection against severe COVID-19 is higher than against symptomatic infection, and also appears relatively preserved over time and against variants. Although Protection protection from symptomatic SARS-CoV-2 infection has been shown to be strongly correlated with neutralising antibody titres, however, this relationship has been is less well described for severe COVID-19. Protection against severe COVID-19 is higher than against symptomatic infection, and also appears relatively preserved over time and against variants. Here we analyse whether neutralising antibody titre remains predictive of protection against severe COVID-19 in the face of waning neutralising antibody levels and emerging variants. Methods: We extracted data from 15 studies reporting on protection against a range of SARS-CoV-2 clinical endpoints ("any infection", "symptomatic infection" and "severe COVID-19"). We then estimated the concurrent neutralising antibody titres using existing parameters on vaccine potency, neutralising antibody decay, and loss of recognition of variants and investigated the relationship between neutralising antibody titre and vaccine effectiveness against severe COVID-19. Findings: Predicted neutralising antibody titres are strongly correlated with vaccine effectiveness against symptomatic and severe COVID-19 (Spearman rho = .94 and 0.63 respectively, p


Sujets)
COVID-19 , Infections
9.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.05.22275943

Résumé

Several studies show neutralizing antibody levels are an important correlate of immune protection from COVID-19 and have estimated the relationship between neutralizing antibodies and protection. However, a number of these studies appear to yield quite different estimates of the level of neutralizing antibodies required for protection. Here we show that after normalization of antibody titers current studies converge on a consistent relationship between antibody levels and protection from COVID-19.


Sujets)
COVID-19
10.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.03.21.22272672

Résumé

Summary Background A large number of studies have been carried out involving passive antibody administration for the treatment and prophylaxis of COVID-19 and have shown variable efficacy. However, the determinants of treatment effectiveness have not been identified. Here we aimed to aggregate all available data on randomised controlled trials of passive antibody treatment for COVID-19 to understand how the dose and timing affect treatment outcome. Methods We analysed published studies of passive antibody treatment from inception to 7 January 2022 that were identified after searching various databases such as MEDLINE, Pubmed, ClinicalTrials.gov. We extracted data on treatment, dose, disease stage at treatment, and effectiveness for different clinical outcomes from these studies. To compare administered antibody levels between different treatments, we used data on in vitro neutralisation of pseudovirus to normalise the administered dose of antibody. We used a mixed-effects regression model to understand the relationship between disease stage at treatment and effectiveness. We used a logistic model to analyse the relationship between administered antibody dose (normalised to the mean convalescent titre) and outcome, and to predict efficacy of antibodies against different Omicron subvariants. Findings We found that clinical stage at treatment was highly predictive of the effectiveness of both monoclonal antibodies and convalescent plasma therapy in preventing progression to subsequent stages (p<0.0001 and p=0.0089, respectively, chi-squared test). We also analysed the dose-response curve for passive antibody treatment of ambulant COVID-19 patients to prevent hospitalisation. Using this quantitative dose-response relationship, we predict that a number of existing monoclonal antibody treatment regimens should maintain clinical effectiveness in infection with currently circulating Omicron variants. Interpretation Early administration of passive antibody therapy is crucial to achieving high efficacy in preventing clinical progression. A dose-response curve was derived for passive antibody therapy administered to ambulant symptomatic subjects to prevent hospitalisation. For many of the monoclonal antibody regimens analysed, the administered doses are estimated to be between 7 and >1000 fold higher than necessary to achieve 90% of the maximal efficacy against the ancestral (Wuhan-like) virus. This suggests that a number of current treatments should maintain high efficacy against Omicron subvariants despite reduction in in vitro neutralisation potency. This work provides a framework for the rational assessment of future passive antibody prophylaxis and treatment strategies for COVID-19. Funding This work is supported by an Australian government Medical Research Future Fund awards GNT2002073 and MRF2005544 (to MPD, SJK), MRF2005760 (to MPD), an NHMRC program grant GNT1149990 (SJK and MPD), and the Victorian Government (SJK). SJK is supported by a NHMRC fellowship. DC, MPD, ZKM and EMW are supported by NHMRC Investigator grants and ZKM and EMW by an NHMRC Synergy grant (1189490). DSK is supported by a University of New South Wales fellowship. KLC is supported by PhD scholarships from Monash University, the Haematology Society of Australia and New Zealand and the Leukaemia Foundation. TT, HW and CB are members of the National COVID-19 Clinical Evidence Taskforce which is funded by the Australian Government Department of Health. Research in context Evidence before this study We identified randomised controlled trials (RCTs) evaluating the effectiveness of SARS-CoV-2-specific neutralising monoclonal antibodies, hyperimmune immunoglobulin and convalescent plasma in the treatment of participants with a confirmed diagnosis of COVID-19 and in uninfected participants with or without potential exposure to SARS-CoV-2. The RCTs were identified from published searches conducted by the Cochrane Haematology living systematic review teams. A total of 37 randomised controlled trials (RCT) of passive antibody administration for COVID-19 were identified. This included 12 trials on monoclonal antibodies, 21 trials of convalescent plasma treatment, and 4 trials of hyperimmune globulin. These trials involved treatment of individuals either prophylactically or at different stages of infection including post-exposure prophylaxis, symptomatic infection, and hospitalisation. The level of antibody administered ranged from a 250 ml volume of convalescent plasma through to 8 grams of monoclonal antibodies. Data for analysis was extracted from the original publications including dose and antibody levels of antibody administered, disease stage and timing of administration, primary outcome of study and whether they reported on our prespecified outcomes of interest, which include protection against symptomatic infection, hospitalisation, need for invasive mechanical ventilation (IMV) and death (all-cause mortality at 30 days). Added value of this study Our study included data across all 37 RCTs of passive antibody interventions for COVID-19 and aggregated the studies by the stage of infection at initiation of treatment. We found that prophylactic administration or treatment in earlier stages of infection had significantly higher effectiveness than later treatment. We also estimated the dose-response relationship between administered antibody dose and protection from progression from symptomatic ambulant COVID-19 to hospitalisation. We used this relationship to predict the efficacy of different monoclonal antibody treatment regimes against the Omicron subvariants BA.1, BA.2, and BA.4/5. We also used this dose-response relationship to estimate the maximal efficacy of monoclonal antibody therapy in the context of pre-existing endogenous neutralising antibodies. Implications of all the available evidence This work identifies that both prophylactic therapy and treatment in the early stages of symptomatic infection can achieve significant protection from infection or hospitalisation respectively. The dose-response relationship provides a quantitative means to predict the change in efficacy of different monoclonal antibodies against new variants and in semi-immune populations based on in vitro neutralisation data. We predict a number of existing monoclonal antibodies will be effective for preventing severe outcomes when administered early in BA.4/5 infections. It is likely that these therapies will provide little protection in individuals with high levels of endogenous neutralising antibodies, such as healthy individuals who have recently received a third dose of an mRNA vaccine.


Sujets)
Leishmaniose cutanée , COVID-19
11.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1207364.v1

Résumé

Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. Over this time global vaccine programs have been introduced, contributing to lowered COVID-19 hospitalisation and mortality rates, particularly in the first world. In late 2021, the Omicron (B.1.1.529) virus variant emerged, with significant genetic differences and clinical effects from other variants of concern (VOC). This variant a demonstrated higher number of polymorphisms in the gene encoding the Spike (S) protein, and there has been displacement of the dominant Delta variant. We assessed the impact of Omicron infection on the ability of: serum from vaccinated and/or previously infected individuals; concentrated human IgG from plasma donors, and licensed monoclonal antibody therapies to neutralise the virus in vitro . There was a 17 to 27-fold reduction in neutralisation titres across all donors who had a detectable neutralising antibody titre to the Omicron variant. Concentrated pooled human IgG from convalescent and vaccinated donors had greater breadth of neutralisation, although the potency was still reduced 16-fold. Of all therapeutic antibodies tested, significant neutralisation of the Omicron variant was only observed for Sotrovimab, with other monoclonal antibodies unable to neutralise Omicron in vitro . These results have implications for ongoing therapy of individuals infected with the Omicron variant.


Sujets)
Infections à coronavirus , COVID-19
12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.23.21268285

Résumé

Vaccination against SARS-CoV-2 results in protection from acquisition of infection as well as improved clinical outcomes even if infection occurs, likely reflecting a combination of residual vaccine-elicited immunity and the recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and T cell immunity after vaccination of seropositive individuals, and after breakthrough infection in vaccinated individuals. Intensive and early longitudinal sampling reveals the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titres. In breakthrough infections, the delayed kinetics of humoral immune recall provides a mechanism for the lack of early control of viral replication but likely underpins accelerated viral clearance and the protective effects of vaccination against severe COVID-19.


Sujets)
Troubles de la mémoire , Douleur paroxystique , COVID-19
13.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267772

Résumé

Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. Over this time global vaccine programs have been introduced, contributing to lowered COVID-19 hospitalisation and mortality rates, particularly in the first world. In late 2021, the Omicron (B.1.1.529) virus variant emerged, with significant genetic differences and clinical effects from other variants of concern (VOC). This variant demonstrated higher numbers of polymorphisms in the gene encoding the Spike (S) protein, and there has been displacement of the dominant Delta variant. We assessed the impact of Omicron infection on the ability of: serum from vaccinated and / or previously infected individuals; concentrated human IgG from plasma donors, and licensed monoclonal antibody therapies to neutralise virus in vitro. There was a 17 to 22-fold reduction in neutralisation titres across all donors who had a detectable neutralising antibody titre to the Omicron variant. Concentrated pooled human IgG from convalescent and vaccinated donors had greater breadth of neutralisation, although the potency was still reduced 16-fold. Of all therapeutic antibodies tested, significant neutralisation of the Omicron variant was only observed for Sotrovimab, with other monoclonal antibodies unable to neutralise Omicron in vitro. These results have implications for ongoing therapy of individuals infected with the Omicron variant.


Sujets)
Infections à coronavirus , COVID-19
14.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.13.21267748

Résumé

In the studies to date, the estimated fold-drop in neutralisation titre against Omicron ranges from 2- to over 20-fold depending on the study and serum tested. Collating data from the se results in a combined estimate of the fold drop in neutralisation titre against Omicron of 9.7 (95%CI 5.5-17.1). We use our previously established model to predict that six months after primary immunisation with an mRNA vaccine, efficacy for Omicron is estimated to have waned to around 40% against symptomatic and 80% against severe disease. A booster dose with an existing mRNA vaccine (even though it targets the ancestral spike) has the potential to raise efficacy to 86.2% (95% CI: 75.4-92.9) (symptomatic) and 98.2% (95% CI 90.9-99.7) (severe) against Omicron.

15.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.11.21261876

Résumé

A number of SARS-CoV-2 variants of concern (VOC) have been identified that partially escape serum neutralisation activity elicited by current vaccines. Recent studies have also shown that vaccines demonstrate reduced protection against symptomatic infection with SARS-CoV-2 variants. Here we integrate published data on in vitro neutralisation and clinical protection to understand and predict vaccine efficacy against existing SARS-CoV-2 variants. We find that neutralising activity against the ancestral SARS-CoV-2 is highly predictive of neutralisation of the VOC, with all vaccines showing a similar drop in neutralisation to the variants. Neutralisation levels remain strongly correlated with protection from infection with SARS-CoV-2 VOC (r=0.81, p=0.0005). We apply an existing model relating in vitro neutralisation to protection (parameterised on data from ancestral virus infection) and find this remains predictive of vaccine efficacy against VOC once drops in neutralisation to the VOC are taken into account. Modelling of predicted vaccine efficacy against variants over time suggests that protection against symptomatic infection may drop below 50% within the first year after vaccination for some current vaccines. Boosting of previously infected individuals with existing vaccines (which target ancestral virus) has been shown to significantly increase neutralising antibodies. Our modelling suggests that booster vaccination should enable high levels of immunity that prevent severe infection outcomes with the current SARS-CoV-2 VOC, at least in the medium term.

16.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.29.21259504

Résumé

A recent study analysed the relationship between neutralising antibody response and protection from SARS-CoV-2 infection across eight vaccines platforms. The efficacy results from a phase 2b/3 trial of a ninth vaccine candidate, CVnCoV (CUREVAC), was announced on 16 June 2021. The low efficacy of this new mRNA vaccine, which showed only 47% protection from symptomatic SARS-CoV-2 infection, was surprising, given the high efficacy of two previous mRNA-based vaccines. A number of factors have been suggested to play a role in the low efficacy in the CVnCoV study, particularly around the dose and immunogenicity of the vaccine (which uses a slightly different mRNA construct) and the potential role of infection with SARS-CoV-2 variants (which were the dominant strains observed in the CVnCoV trial).


Sujets)
COVID-19
17.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21252641

Résumé

Both previous infection and vaccination have been shown to provide potent protection from COVID-19. However, there are concerns that waning immunity and viral variation may lead to a loss of protection over time. Predictive models of immune protection are urgently needed to identify immune correlates of protection to assist in the future deployment of vaccines. To address this, we modelled the relationship between in vitro neutralisation levels and observed protection from SARS-CoV-2 infection using data from seven current vaccines as well as convalescent cohorts. Here we show that neutralisation level is highly predictive of immune protection. The 50% protective neutralisation level was estimated to be approximately 20% of the average convalescent level (95% CI = 14-28%). The estimated neutralisation level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level (CI = 0.7-13%, p = 0.0004). Given the relationship between in vitro neutralization titer and protection, we then used this to investigate how waning immunity and antigenic variation might affect vaccine efficacy. We found that the decay of neutralising titre in vaccinated subjects over the first 3-4 months after vaccination was at least as rapid as the decay observed in convalescent subjects. Modelling the decay of neutralisation titre over the first 250 days after immunisation predicts a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralisation titres against some SARS-CoV-2 variants of concern are reduced compared to the vaccine strain and our model predicts the relationship between neutralisation and efficacy against viral variants. Our analyses provide an evidence-based prediction of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.


Sujets)
COVID-19
18.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.13.20248143

Résumé

The capacity of antibodies to engage with innate and adaptive immune cells via the Fc region is important in preventing and controlling many infectious diseases, and is likely critical in SARS-CoV-2 infection. The evolution of such antibodies during convalescence from COVID-19 is largely unknown. We developed novel assays to measure Fc-dependent antibody functions against SARS-CoV-2 spike (S)-expressing cells in serial samples from a cohort of 53 subjects primarily with mild-moderate COVID-19, out to a maximum of 149 days post-infection. We found that S-specific antibodies capable of engaging dimeric FcγRIIa and FcγRIIIa decayed linearly over time. S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declined linearly as well, in line with the decay of S-specific IgG. Although there was significant decay in S-specific plasma ADCC and ADP activity, they remained readily detectable by all assays in 94% of our cohort at the last timepoint studied, in contrast with neutralisation activity which was only detectable in 70% of our cohort by the last timepoint. Our results suggest that Fc effector functions such as ADCC and ADP could contribute to the durability of SARS-CoV-2 immunity, particularly late in convalescence when neutralising antibodies have waned. Understanding the protective potential of antibody Fc effector functions is critical for defining the durability of immunity generated by infection or vaccination.


Sujets)
COVID-19 , Maladies transmissibles
19.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.290247

Résumé

The rSWeeP package is an R implementation of the SWeeP model, designed to handle Big Data. rSweeP meets to the growing demand for efficient methods of heuristic representation in the field of Bioinformatics, on platforms accessible to the entire scientific community. We explored the implementation of rSWeeP using a dataset containing 31,386 viral proteomes, performing phylogenetic and principal component analysis. As a case study we analyze the viral strains closest to the SARS-CoV, responsible for the current pandemic of COVID-19, confirming that rSWeeP can accurately classify organisms taxonomically. rSWeeP package is freely available at https://bioconductor.org/packages/ release/bioc/html/rSWeeP.html.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
20.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.09.09.20191205

Résumé

The durability of infection-induced SARS-CoV-2 immunity has major implications for public health mitigation and vaccine development. Animal studies and the scarcity of confirmed re-infection suggests immune protection is likely, although the durability of this protection is debated. Lasting immunity following acute viral infection requires maintenance of both serum antibody and antigen-specific memory B and T lymphocytes and is notoriously pathogen specific, ranging from life-long for smallpox or measles4, to highly transient for common cold coronaviruses (CCC). Neutralising antibody responses are a likely correlate of protective immunity and exclusively recognise the viral spike (S) protein, predominantly targeting the receptor binding domain (RBD) within the S1 sub-domain. Multiple reports describe waning of S-specific antibodies in the first 2-3 months following infection. However, extrapolation of early linear trends in decay might be overly pessimistic, with several groups reporting that serum neutralisation is stable over time in a proportion of convalescent subjects. While SARS-CoV-2 specific B and T cell responses are readily induced by infection, the longitudinal dynamics of these key memory populations remains poorly resolved. Here we comprehensively profiled antibody, B and T cell dynamics over time in a cohort recovered from mild-moderate COVID-19. We find that binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection, as expected, with a similar decline in S-specific CD4+ and circulating T follicular helper (cTFH) frequencies. In contrast, S-specific IgG+ memory B cells (MBC) consistently accumulate over time, eventually comprising a significant fraction of circulating MBC. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent subjects to 74 days, with probable additive protection from B and T cells. Overall, our study suggests SARS-CoV-2 immunity after infection is likely t 66 o be transiently protective at a population level. SARS-CoV-2 vaccines may require greater immunogenicity and durability than natural infection to drive long-term protection.


Sujets)
Maladies virales , Lymphome B , COVID-19
SÉLECTION CITATIONS
Détails de la recherche